SM3H HW11.3 Parametric Equations

1) $a = < t + 3, 4 - t >$			
t	x(t)	y(t)	a = (x, y)
-2	1	6	(1,6)
-1	2	5	(2,5)
0	3	4	(3, 4)
1	4	3	(4,3)
2	5	2	(5,2)

For problems 1-6, finish the parametric table and sketch the parametric curve. 1) a - c + 1 = 2 b - c + 2 = 2

2) $b = \langle t^2, 3 - t \rangle$			
t	x(t)	y(t)	b = (x, y)
-2	4	5	(4,5)
-1	1	4	(1, 4)
0	0	3	(0,3)
1	1	2	(1,2)
2	4	1	(4, 1)

3) c	$= < t - 1, \frac{2}{t}$	>	
t	x(t)	y(t)	c = (x, y)
-2	-3	-1	(-3, -1)
-1	-2	-2	(-2, -2)
0	-1	undefined	Ø
1	0	2	(0, 2)
2	1	1	(1, 1)

4) $d = < \sin t , \cos t >$

t	x(t)	y(t)	d = (x, y)
0	0	1	(0, 1)
$\frac{\pi}{2}$	1	0	(1,0)
π	0	-1	(0, -1)
$\frac{3\pi}{2}$	-1	0	(-1,0)
2π	0	1	(0, 1)

7. During a dance recital for Orem Dance Company, Tatum moves along a stage. Tatum's dance position, d, toward the right or left across the stage as a function of time is given by x(t) with positive x-values indicating stage right while her positive toward or away from the audience is given by y(t) with positive y-values meaning closer to the audience. t is measured in seconds after the moment she begins the dance. x, y are measured in feet.

$$d = < 2\cos(2\pi t), 3\cos(2.5\pi t) >$$

Find Tatum's position during the first two seconds of the choreography by filling out the table and sketching d(x, y):

t	x(t)	y(t)	d(x,y)
0	2	3	(2,3)
0.25	0	-1.148	(0, -1.148)
0.5	-2	-2.121	(-2, -2.121)
0.75	0	2.772	(0, 2.772)
1	2	0	(2,0)
1.25	0	-2.772	(0, -2.772)
1.5	-2	2.121	(-2,2.121)
1.75	0	1.148	(0, 1.148)
2	2	-3	(2, -3)

8. During a football play, t = 0 represents the moment that the ball is snapped, which starts the clock. Jordy is allowed to move up to 2 seconds before the ball is snapped. Jordy's motion is given by the parametric equation $j = \langle t^2 + 2t - 2, t - 1 \rangle$ with $-2 \leq t \leq 2$ being the restriction on t that describes Jordy's motion.

Find Jordy's position during $-2 \le t \le 2$ of the play by filling out the table and sketching j(x, y):